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We describe a stochastic series expansion quantum Monte Carlo method for a two-dimensional S=1/2 XY
model �or, equivalently, hard-core bosons at half filling� which in addition to the standard pair interaction J
includes a four-site term K that flips spins on a square plaquette. The model has three ordered ground state
phases; for K /J�8 it has long-range xy spin order �superfluid bosons�, for K /J�15 it has staggered spin order
in the z direction �charge-density wave�, and between these phases it is in a state with columnar order in the
bond and plaquette energy densities. We discuss an implementation of directed-loop updates for the SSE
simulations of this model and also introduce a “multibranch” cluster update which significantly reduces the
autocorrelation times for large K /J. In addition to the pure J-K model, which in the z basis has only off-
diagonal terms, we also discuss modifications of the algorithm needed when various diagonal interactions are
included.
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I. INTRODUCTION

In the ongoing quest to explore possible ground states and
quantum phase transitions in quantum condensed matter sys-
tems �fermions, bosons, or quantum spins�, numerical studies
are important for establishing the true nature of the phases
and transitions of relevant model Hamiltonians. In particular,
recent interest in “exotic” phenomena has focused attention
on models with frustrated or competing interactions, in
which interplay between adjacent ordered phases often gives
rise to interesting effects �1–4�. For classical models, Monte
Carlo simulations in combination with finite-size scaling can
be used very successfully in studies of a wide range of sys-
tems with and without frustration. However, only a limited
class of quantum models are amenable to such studies, as the
infamous sign problem prohibits large-scale quantum Monte
Carlo �QMC� studies of frustrated antiferromagnetic spin
systems and fermions in more than one dimension. It is
therefore important to search for non-sign-problematic quan-
tum models, possibly with competing interactions, that dis-
play complex ground state phase diagrams and can be effi-
ciently studied using Monte Carlo simulations. Although not
all possible types of ground states and quantum phase tran-
sitions may be realizable within this class of Hamiltonians, it
is likely that many insights into the low-temperature physics
of quantum matter can still be gained in this way. Construct-
ing optimized and efficient quantum Monte Carlo algorithms
for such candidate Hamiltonians is hence an important task.

In this paper, we present the details of a stochastic series
expansion �SSE� algorithm that we have developed for large-
scale QMC studies of a two-dimensional �2D� S=1/2 XY
model with an added four-site ring-exchange term �the
method can be easily generalized for three-dimensional sys-
tems �5��. Defining the following bond and plaquette opera-
tors:

Bij = Si
+Sj

− + Si
−Sj

+ = 2�Si
xSj

x + Si
ySj

y� , �1�

Pijkl = Si
+Sj

−Sk
+Sl

− + Si
−Sj

+Sk
−Sl

+, �2�

the J-K Hamiltonian is given by

H = − J�
�ij�

Bij − K �
�ijkl�

Pijkl, �3�

where �ij� denotes a pair of nearest-neighbor sites on a 2D
square lattice and �ijkl� are sites on the corners of a
plaquette, as illustrated in Fig. 1�a�. The plaquette flip Pijkl is
only a subset of all the possible cyclic exchanges among four
spins and corresponds to retaining only the purely x and y
terms; it has a nonvanishing matrix element only between the
two spin states with alternating �staggered� spins on the cor-
ners of the plaquette, as illustrated in Fig. 1�b�. In the stan-
dard way, the J-K Hamiltonian �3� can also be considered as
a half-filled hard-core boson model, where up and down
spins correspond to filled and empty sites and J is the
nearest-neighbor hopping. We will frequently use terminol-
ogy referring to this boson representation. With the negative
sign in front of the plaquette term �K�0�, the J-K model can
be studied using QMC methods without a sign problem �the
sign of the J term is actually irrelevant in this regard�. In this
model, there is no frustration in the conventional sense, i.e.,
antiferromagnetic interactions on lattice loops with an odd
number of links �which leads to sign problems�. However,
the J and K terms individually favor different types of
ground states, which leads to interesting competition effects
at intermediate K /J.

FIG. 1. �a� Labeling convention for the indices of an operator
Oijkl acting on the corners of a plaquette. The label p refers to the
whole plaquette, so that Op�Oijkl. �b� The two plaquette configu-
rations between which the K term can act; open and solid circles
correspond to up and down spins, respectively.
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The J-K model was recently found to exhibit three differ-
ent ordered ground states as a function of the ratio K /J of the
four-site �K� and two-site �J� terms �6�. It was argued that the
transition between the magnetically ordered state for K /J
�8 and a striped �or valence-bond-solid �VBS�� phase at
higher K /J is a continuous quantum phase transition, con-
trary to general expectations for an order-order transition.
Subsequently, this transition was proposed to possibly be a
realization of a “deconfined” quantum critical point �1�. We
have used the SSE algorithms to further study the quantum
critical scaling and finite-T transitions in this model. How-
ever, in this paper we only briefly summarize the results and
focus on the algorithmic issues. A full account of the results
will be presented elsewhere �7�.

For K=0, the J-K model reduces to the standard XY
model, which undergoes a Kosterlitz-Thouless transition at
TKT/J	0.69 �8–10�. In the boson language, the system is a
superfluid below TKT. The main features of the T=0 phase
diagram for K /J�0 were presented in Ref. �6�. Our most
recent simulations �7� show that the superfluid density van-
ishes at K /J	7.91. At the same point, within the accuracy of
our calculations, the ground state develops a stripe order,
where the bond and plaquette strengths �Bij� and �Pijkl� are
modulated at wave vector q= �� ,0� or �0,��. This state can
also be considered a columnar VBS, since not all the bonds
within the “ladders” of strong bonds are equal—the strongest
ones are those on the rungs of the ladders. The VBS order
vanishes at K /J	14.5, in a first-order transition to an Ising-
type antiferromagnetic state �a charge-density wave �CDW�
at q= �� ,�� in the boson picture�. The nature of the
superfluid-VBS transition has not yet been completely clari-
fied. While we do observe power-law scaling with nontrivial
exponents for the superfluid density as well as for the order
parameter corresponding to the VBS phase, the exponents do
not appear to be mutually consistent with hyperscaling. The
transition could be weakly first order, but we do not have any
direct evidence of discontinuities or of any region of coex-
istence of the two phases. Numerically we can of course
never exclude an extremely weakly first-order transition or a
very narrow coexistence region. We have also recently stud-
ied the evolution of the VBS phase boundaries when the
system is coupled to an external magnetic field, and there we
do find first-order transitions �11�.

The outline of the rest of this paper is the following. In
Sec. II we describe the SSE algorithm for the J-K Hamil-
tonian. Implementations of the SSE scheme for various spin
�12,13� and 1D fermion �14� models have been discussed at
length in several recent papers, but since the four-particle
term necessitates a more complex sampling scheme, with
some important additional features, we describe our algo-
rithm in detail here. We have constructed two types of cluster
updates for sampling the SSE configurations; a directed-loop
update as well as a “multibranch” cluster update. The latter
significantly reduces the autocorrelation times for large K /J.
In Sec. II we also discuss estimators for several important
physical quantities. We discuss autocorrelation functions in
the different ordered phases in Sec. III. In Sec. IV we discuss
modifications of the algorithm when different types of
potential-energy terms are included in addition to the J and K

terms. We conclude with a brief discussion in Sec. V.

II. STOCHASTIC SERIES EXPANSION

The SSE method �15–18� is an efficient and widely appli-
cable generalization of Handscomb’s �19� power-series
method for the S=1/2 Heisenberg model. It has previously
been used for several models with two-body interactions,
including the pure XY model �K=0 in Eq. �3� �10��. As in
world-line Monte Carlo simulations �20�, loop-cluster algo-
rithms �21� can speed up SSE simulations very significantly
�18,22�. Recently, a framework was devised for constructing
and optimizing loop-type algorithms under very general con-
ditions �12�. Here we will apply this directed-loop scheme to
SSE simulations including the four-spin term. A loop-type
algorithm cannot be constructed for the pure K model �J=0
in Eq. �3��, however, and the loops are also inefficient when
J /K�1. We therefore also develop a type of multibranch
cluster update, which can be used in combination with the
directed loops, and enables efficient simulations for any J /K.
The multibranch update bears some resemblance to, but is
more complex than, a “quantum-cluster” update recently de-
veloped for the transverse Ising model �13�.

Below, we give a brief general summary of the SSE
method. We then develop the directed-loop and multibranch
cluster updates for the J-K Hamiltonian and discuss the SSE
estimators of several important physical quantities. We
present some illustrative results for autocorrelation functions
obtained with and without the multibranch cluster update
before concluding with a discussion of the directed-loop
equations for the Hamiltonian with various diagonal interac-
tion included.

A. General SSE formalism

To construct the SSE representation of a quantum me-
chanical expectation value at temperature T=1/�;

�A� =
1

Z
Tr
Ae−�H�, Z = Tr
e−�H� , �4�

the Hamiltonian is first written as a sum of elementary inter-
actions

H = − �
t

�
a

Ht,a, �5�

where in a chosen basis 
���� the operators satisfy

Ht,a���  ���� , �6�

where ��� and ���� are both basis states. The indices t and a
refer to the operator types �various kinetic and potential
terms� and the lattice units over which the interactions are
summed �bonds, plaquettes, etc.�. A unit operator H0,0�1 is
also defined. Using the Taylor expansion of e−�H truncated at
order M, the partition function can then be written as �15�

Z = �
�

�
SM

�n�M − n�!
M! ����

i=1

M

Hti,ai
��� , �7�

where SM denotes a sequence of operator indices,
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SM = �t1,a1�,�t2,a2�, . . . ,�tM,aM� , �8�

and n denotes the number of non-�0, 0� elements in SM �i.e.,
the actual expansion order of the terms�. The finite truncation
M and the use of a fill-in operator H0,0 are not strictly nec-
essary �16� but simplify some aspects of the algorithm. M
can be adjusted during the equilibration of the simulation, so
that it always exceeds the highest power n reached, M
=Anmax, where a suitable value for the factor is A	1.25.
This leads to M �N, where N is the system volume, and the
remaining truncation error is completely negligible. The ad-
justment of M has been discussed in more detail in Ref. �17�.

Defining a normalized state ���p�� obtained by acting on
���= ���0�� with the first p operators in the product in Eq.
�7�,

���p��  �
i=1

p

Hti,ai
��� , �9�

the requirement for a nonzero contribution to Z is the propa-
gation periodicity ���M��= ���0��. This implies considerable
constraints on the off-diagonal operators in the product, and
clearly the vast majority of the terms are zero. In an efficient
SSE method, transitions �� ,SM�→ ��� ,SM� � satisfying de-
tailed balance should be attempted only within the subset of
contributing configurations. Although the details of such
sampling procedures to some extent depend on the model
under study, three different classes of updates are typically
used. We here summarize these in general terms, before turn-
ing to the implementation for the J-K model.

�i� The expansion order n is changed in diagonal updates,
where a fill-in unit operator is replaced by a diagonal opera-
tor from the sum �5�, and vice versa, i.e., H0,0↔Hd,a, where
the type index d corresponds to a diagonal operator in the
basis used.

�ii� Off-diagonal operators cannot be added and removed
one by one with the periodicity constraint ���M��= ���0��
maintained. Local updates involving two simultaneously re-
placed operators can be used for this purpose �16�. However,
much more efficient cluster-type updates, which may involve
a large number of operators, can also be constructed �13,18�.
Here the general strategy is to find a set of operators 
ti ,ai�,
such that a new valid configuration can be obtained by
changing only the type indices ti. For the J-K Hamiltonian,
we will discuss two such updates, directed loops and multi-
branch clusters.

�iii� A third type of update is one that affects only the state
���. This state, which is just one out of the whole cycle of
propagated states ���p��, can change also in the updates �ii�
involving off-diagonal operators. However, at high tempera-
tures many sites will frequently have no operators acting on
them. The local states at these sites will then not be affected
by the off-diagonal updates. They can instead be randomly
modified as they do not affect the weight. Such state updates
can improve the statistics at high temperatures but are often
not required for the sampling to be ergodic.

B. Plaquette operators

Turning now to the J-K model, we use the standard
z-component basis

��� = �	i
z, . . . ,	N

z �, 	i
z = ± 1, �10�

where Si
z= �1/2�	i

z, on lattices with N=Lx
Ly sites �or N
plaquettes�. Typically we consider square lattices, Lx=Ly, but
some results for rectangular, Lx�Ly, systems have also been
discussed �6�. It is convenient to express all interactions in
the Hamiltonian �3� in terms of plaquette operators,

H1,a = CIijkl,

H2,a = �J/2�BijIkl,

H3,a = �J/2�BjkIil,

H4,a = �J/2�BklIij ,

H5,a = �J/2�BliIjk,

H6,a = KPijkl, �11�

where Iij and Iijkl are unit operators associated with bonds
and plaquettes, respectively, and the indexing is defined in
Fig. 1. Up to a constant NC, the Hamiltonian is then given by
a sum �5�, where the type index t=1, . . . ,6, and a is the
plaquette index, a=1, . . . ,N. As explained above, there is
also a unit operator H0,0=1, which is not part of the Hamil-
tonian but has been introduced only as a fill-in element for
augmenting the operator-index sequences of length n�M in
the truncated partition function Eq. �7� to M.

C. Diagonal update

Because there are no diagonal operators in the original
Hamiltonian �3�, the constant operators H1,a have been added
in order to enable diagonal updates of the form
�0,0�↔ �1,a� in SM. For all elements �tp ,ap� with tp=0,1,
such substitutions can be carried out sequentially for p
=1, . . . ,M. In the → direction, the plaquette index a is cho-
sen randomly among 1, . . . ,N. The Metropolis acceptance
probabilities are then �17�

P��0,0� → �1,a�� =
NC�

M − n
, �12�

P��1,a� → �0,0�� =
M − n + 1

NC�
, �13�

where P�1 should be interpreted as probability 1. If an
attempt to remove a plaquette operator, i.e., �1,a�→ �0,0�, is
not accepted, a new plaquette index a can be generated at
random. Note that for this model, where the only diagonal
operators are the added constants H1,a, it is not necessary to
keep track of the propagated states during the diagonal up-
date. In general, e.g., if a diagonal interaction is added to the
Hamiltonian �3�, the constant C in Eqs. �12� and �13� should
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be replaced by the matrix element ���p��H1,ap
���p−1��

= ���p��H1,ap
���p�� of the diagonal operator in the propa-

gated state at which the replacement is done.

D. Linked vertices

In the directed-loop and multibranch cluster updates,
which we will discuss below, it is useful to represent the
matrix elements in Eq. �7� as a linked lists of “vertices” �18�.
The weight of a configuration �� ,SM� can be written as

W��,SM� =
�n�M − n�!

M! �
p=1

M

W�p� , �14�

where W�p� is a vertex weight, which is simply the matrix
element of the corresponding plaquette operator at position p
in SM;

W�p� = ���p��Htp,ap
���p − 1�� , �15�

which with the operators �11� can take the value C, J /2, or
K. Since the loop and cluster updates are carried out within
sectors of fixed n �only the diagonal update changes n�, the
fill-in operators H0,0 are not needed in the linked-vertex rep-
resentation. A vertex represents the local four-spin states on
plaquette ap in the matrix element �15� before and after the
plaquette operator has acted. These eight spin states consti-
tute the legs of the vertex. For the J-K model, there are three
classes of vertices, as illustrated in Fig. 2. The constant op-
erators H1,a correspond to C vertices �with weight C�, the
bond-flip operators H2,a–H5,a to J vertices �with weight
J /2�, and the plaquette-flip operators H6,a to K vertices �with
weight K�. An example of a linked-vertex representation of a
term with three plaquette operators is shown in Fig. 3. The
links connect vertex legs on the same site, so that from each
leg of each vertex, one can reach the next or previous vertex
leg on the same site �i.e., the links are bidirectional�. In cases
where there is only one operator acting on a given site, the
corresponding “before” and “after” legs of the same vertex
are linked to each other �as is the case with the legs on sites
1 and 2 in Fig. 3�.

During the simulation, the spin state ��� and the operator
list SM are stored at all times. The linked-vertex representa-
tion is created after each full sweep of diagonal updates.
After the directed-loop and multibranch cluster updates have
been carried out, the changes are mapped back into a new ���
and SM. We will not discuss here how these data structures
are implemented and used in practice in a computer program.
The procedures are completely analogous to simulations with
two-body interactions, for which an implementation was de-
scribed in detail in Ref. �12�.

E. Directed loops

In the original world-line QMC loop algorithm �23�, spins
are flipped along a one-dimensional closed path �the loop� on
the space-time lattice of the discretized �Trotter decomposed�
or continuous �24� path-integral representation �21�. The path
is self-avoiding, and a configuration can be subdivided into
loops that may be flipped independently of each other. Al-
lowing the path to self-intersect and back-track, one can con-
struct valid algorithms for a much larger class of models.
Such general loop-type algorithms have been constructed
both for continuous-time world lines �the worm algorithm
�25�� and for SSE �the operator-loop algorithm �18�� �22�.
The detailed balance equations—the directed-loop
equations—that must be satisfied when constructing general
self-intersecting and back-tracking loops were recently de-
rived within the SSE framework, and a generalization to the
path integral representation was also shown �12�. Here we
will implement the directed-loop scheme for SSE sampling
of the J and K terms.

In an SSE operator-loop algorithm, where the loops con-
stitute connected strings of operators �or vertices in the
linked-vertex representation� �18�, the building of a loop
consists of a series of steps, in each of which a vertex is
entered at one leg �the entrance leg� and an exit leg is chosen
according to probabilities that depend on the entrance leg
and the spin states at all the legs. The entrance to the follow-

FIG. 2. Examples of vertices for the J-K model. The solid and
open circles correspond to up and down spins, respectively, before
�below the bar� and after �above the bar� an operator has acted. The
spins on the plaquette are here drawn on a line in order to allow for
a more convenient graphical representation. The order of the sites
correspond to the indices i , j ,k , l in Fig. 1 from left to right. �a� is
one out of 16 diagonal C vertices, �b� is one out of 32 J vertices
�which flip two spins�, and �c� is one of the two K vertices �which
flip all four spins�.

FIG. 3. The linked-vertex representation corresponding to the
matrix element ���H6,2H4,1H4,2��� �left�, where the basis state ���
= �↓ ↓ ↓ ↑ ↑ ↓ � �right�. The bidirectional links are represented as
dashed lines. The site and plaquette numbering for the six-site lat-
tice is shown to the right. The numbers at the vertex legs indicate
links across the periodic propagation boundary, and the correspond-
ing spins are hence the same as in the state ���. The numbers here
also correspond to the site numbering of the lattice shown to the
right.
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ing vertex is given by the link from the chosen exit leg. The
spins at all vertex legs visited are flipped during the loop
building.

The original starting point of the loop is chosen at ran-
dom. Two link discontinuities are created when the first pair
of entrance and exit spins is flipped, i.e., the legs to which
these are linked will be in different spin states �this is analo-
gous to introducing the two sources in the worm algorithm
�25��. Configurations contributing to Z only contain links be-
tween legs in the same spin states. One of the discontinuities
will be propagated during the loop building, whereas the
other one will remain at the original starting point. The loop
closes when the propagating discontinuity reaches the sta-
tionary one, so that they annihilate each other. A new con-
tributing configuration has then been generated. If the path is
self-intersecting �which is not always the case �18��, the
changes in the configuration may in effect correspond to sev-
eral disconnected loops.

When a vertex has been entered at a given leg, the prob-
abilities for choosing one out of the possible exit legs have to
be chosen so that detailed balance is satisfied. In general,
these probabilities are not unique, and in most cases the most
evident ones involve high probabilities for bounces, where
the exit and entrance legs are the same and the loop building
hence backtracks one step �18�. It is normally �26� desirable
to minimize the probability of bounces. The directed-loop
scheme �12� systematizes the search for valid sets of exit
probabilities and enables a minimization of the bounce prob-
ability. To construct the directed-loop equations for the exit
probabilities, weights are first assigned to all possible paths
through a vertex from a given entrance leg. The sum of all
these path weights must equal the bare vertex weight �15�,
i.e., the matrix element before the entrance and exits spins
have been flipped. The actual normalized exit probability is
the path weight divided by the bare vertex weight. The key
element of the scheme is that weights for vertex paths that
constitute each other’s reverses have to be equal in order for
detailed balance to be fulfilled �a generalized scheme where
this is not necessarily the case has also been discussed re-
cently �26��. Examples of such related vertex paths in the
J-K model are shown in Fig. 4. The directed-loop equations
written down on the basis of these simple rules often form
several different closed sets that can be solved for the path
weights independently of each other. Because of symmetries,
many of the equation sets can be identical. In general, the
directed loop equations have an infinite number of solutions,
which can be significantly restricted by minimizing the

bounce probabilities. In some cases there is a unique
minimum-bounce solution �sometimes with zero bounce
probability�, but often there is still a high degree of freedom
left �12,27,28�.

For the J-K model, a one-dimensional path segment can
in one step transform a C vertex into a J vertex, and vice
versa, an example of which is shown in Fig. 4�a�. A J vertex
can be transformed into a K vertex, and vice versa, as shown
in Fig. 4�b�. C and K vertices cannot be directly transformed
into each other, however. As a consequence, the closed sets
of vertex paths that contain C↔J transformations are inde-
pendent from those containing J↔K transformations.

The closed sets containing C↔J transformations are
similar to those for the XY model �12�, although the sets are
larger because a C vertex can be transformed into two dif-
ferent J vertices. As in the XY model, no bounces are re-
quired for detailed balance in this case �until we discuss the
inclusion of additional diagonal interactions in Sec. IV�. One
closed set with C↔J transformations is shown in Fig. 5. To
construct such a set, one first selects a “reference” vertex
�any vertex� and an entrance leg, and then finds all paths that
lead to new valid vertices, sampling all allowed exit legs.
This corresponds to the first row of Fig. 5, where the bounce
process has not been included since, as will be shown below,
its weight can be set to zero in this case. Each of the resulting
vertices �i.e., when the entrance and exit spins have been
flipped� is then considered in turn, using as the entrance legs
the exit legs from the previous step. This leads to rows two
to four in Fig. 5. The procedure is repeated for each new
combination of vertex and exit leg that is created. This sys-
tematically generates all pairs of vertex-paths that constitute
each other’s reverses, i.e., those that must have equal weights
for detailed balance to be satisfied. In the case considered
here, no new vertex paths are created after row four, as the
reverse of each path has then already been generated. The set
is hence closed. Other closed sets are constructed by picking
a starting vertex and entrance leg combination that has not
yet appeared within the sets already completed. This is re-
peated until all vertices and entrance legs combinations have
been exhausted.

The directed loop equations corresponding to the closed
set shown in Fig. 5 are

a11 + a12 + a13 = W1 = C ,

FIG. 4. Two examples of vertex paths that are related in the
directed-loop scheme. �a� shows a process, and its reverse, where a
C vertex is transformed into a J vertex. �b� shows two related J↔K
transformations. In the loop construction the spin states at the en-
trance and exit legs are flipped. The spin states shown in the verti-
ces here are those before the flips have been carried out.

FIG. 5. A closed set of C and J vertex paths, with their corre-
sponding weights aij that have to satisfy the directed-loop
equations.
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a21 + a22 + a23 = W2 = C ,

a31 + a32 + a33 = W3 = J/2,

a41 + a42 + a43 = W4 = J/2, �16�

where the weights aij are identified with the paths in the
figure and Wi are the bare vertex weights before the entrance
and exit spins have been flipped. Detailed balance requires
that the weights corresponding to opposite vertex paths are
equal, i.e.,

a21 = a11,

a31 = a12,

a32 = a22,

a41 = a13,

a42 = a23,

a43 = a33. �17�

The weights also have to be positive definite, since they are
related to probabilities by dividing with the positive matrix
elements Wi. Even with these constraints, the solution is not
unique. One can reasonably assume that the most efficient
solution also has equal weights for paths that are related by
symmetries, e.g., a12=a13. Using all such symmetries, the
solution is still not unique, however. It can be expected that
it is efficient to maximize the weights of the paths that trans-
form a C vertex into a J vertex, which is equivalent to mini-
mizing the weights of the continue-straight paths that trans-
form a C vertex into another C vertex. We have no proof of
our assertion that this is a good strategy, but as it is a quite
challenging task to investigate all possible valid solutions,
we will use it and leave other possibilities for future studies
�this issue has in fact recently been addressed in the context
of other models �29��. In Fig. 5, there are only two C→C
paths; the pair with weights a11, a21. The minimum value of
these is a11=a21=C−J /2, which also implies C�J /2. There
are now enough conditions to render a unique solution to this
set of directed loop equations;

a11 = C − J/2, a12 = J/4, a13 = J/4,

a21 = C − J/2, a22 = J/4, a23 = J/4,

a31 = J/4, a32 = J/4, a33 = 0,

a41 = J/4, a42 = J/4, a43 = 0. �18�

The actual exit probabilities Pij
a =aij /Wi are

P11
a = 1 − J/2C, P12

a = J/4C, P13
a = J/4C ,

P21
a = 1 − J/2C, P22

a = J/4C, P23
a = J/4C ,

P21
a = 1/2, P22

a = 1/2, P23
a = 0,

P41
a = 1/2, P42

a = 1/2, P43
a = 0, �19�

where the superscript a is used as a reminder that these prob-
abilities correspond to the paths shown in Fig. 5. Note that
the probabilities here depend only on the type of vertex
transformation, C→C�P=1−J /2C�, C→J�P=J /2C�, J
→J�P=0�, or J→C�P=1/2�, which can aid the implemen-
tation of the probability tables in the code. All other sets with
C↔J transformations are either related by trivial symmetries
to that shown in Fig. 5 or are very similar to it. The exit
probabilities are given simply by the type of the correspond-
ing vertex transformation exactly as above.

The directed-loop equations for the closed sets of paths
that involve J↔K transformations sometimes require non-
zero bounce probabilities. A closed set of paths is shown in
Fig. 6. The corresponding equations for the path weights bij
are

b11 + b12 + b13 + b14 + b15 = J/2,

b21 + b22 + b23 + b24 + b25 = J/2,

b31 + b32 + b33 + b34 + b35 = K ,

b41 + b42 + b43 + b44 + b45 = J/2,

b51 + b52 + b53 + b54 + b55 = J/2. �20�

Again, we will assume that it is advantageous to minimize
the bounce probabilities, i.e., the bounce weights bi,5 above.
For K2J all the bounce weights can in fact be zero. The
weight of the continue-straight paths �e.g., b11�, which here

FIG. 6. A closed set of vertex
paths with J↔K transformations,
labeled by their path weights bij.
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transform a J vertex into a J vertex with the same spin flips
�i.e., the same plaquette operator�, can be set to zero. A sym-
metric K2J solution is then

b11 = 0, b12 = K/4, b13 = J/4 − K/8,

b14 = J/4 − K/8, b15 = 0,

b21 = 0, b22 = K/4, b23 = J/4 − K/8,

b24 = J/4 − K/8, b25 = 0,

b31 = K/4, b32 = K/4, b33 = K/4, b34 = K/4, b35 = 0,

b41 = J/4 − K/8, b42 = 0, b43 = J/4 − K/8,

b44 = K/4, b45 = 0,

b51 = J/4 − K/8, b52 = 0, b53 = K/4, b54 = J/4 − K/8,

b55 = 0. �21�

For K�2J, the bounce weight b35 has to be nonzero for a
positive definite solution. Minimizing this weight one ob-
tains the following solution:

b11 = 0, b12 = J/2, b13 = 0, b14 = 0, b15 = 0,

b21 = 0, b22 = J/2, b23 = 0, b24 = 0, b25 = 0,

b31 = J/2, b32 = J/2, b33 = J/2, b34 = J/2, b35 = K − 2J ,

b41 = 0, b42 = 0, b43 = 0, b44 = J/2, b45 = 0,

b51 = 0, b52 = 0, b53 = J/2, b54 = 0, b55 = 0.

�22�

The exit probabilities are hence, for K2J,

p11
b = 0, P12

b = K/2J, P13
b = 1/2 − K/4J ,

P14
b = 1/2 − K/4J, P15

b = 0,

p21
b = 0, P22

b = K/2J, P23
b = 1/2 − K/4J ,

P24
b = 1/2 − K/4J, P25

b = 0,

p31
b = 1/4, P32

b = 1/4, P33
b = 1/4, P34

b = 1/4, P35
b = 0,

p41
b = 1/2 − K/4J, P42

b = 0,

P43
b = 1/2 − K/4J, P44

b = K/2J, P45
b = 0,

p51
b = 1/2 − K/4J, P52

b = 0, P53
b = K/2J ,

P54
b = 1/2 − K/4J, P55

b = 0, �23�

and for K�2J

P11
b = 0, P12

b = 1, P13
b = 0, P14

b = 0, P15
b = 0,

P21
b = 0, P22

b = 1, P23
b = 0, P24

b = 0, P25
b = 0,

P31
b = J/2K, P32

b = J/2K, P33
b = J/2K, P34

b = J/2K ,

P35
b = 1 − 2J/K ,

P41
b = 0, P42

b = 0, P43
b = 0, P44

b = 1, P45
b = 0,

P51
b = 0, P52

b = 0, P53
b = 1, P54

b = 0, P55
b = 0. �24�

Note that the solution is continuous across K=2J.
Also in this case the probabilities are seen to depend only

on the type of vertex class transformation, J→J, J→J�, J
→K, K→J, or K→K �bounce�. Here one has to distinguish
between a continue-straight J→J transformation where the
spin flip remains on the same bond �e.g., b11�, and a J→J�
transformations where the spin flip moves to a neighboring
bond on the plaquette �e.g., b13�.

There is one more type of closed set of vertex paths, an
example of which is shown in Fig. 7. In this case, neither a
valid K vertex nor a J vertex with the flip moved to a differ-
ent nearest-neighbor pair can be reached from the J vertex
and the chosen entrance leg. As the two vertices shown have
the same bare weights, no bounce processes have to be in-
cluded and the exit is unique:

P1
c = 1,

P2
c = 1. �25�

All closed sets of vertex paths can be related to those
shown in Figs. 5–7, and in all cases the probabilities depend
only on how the paths transform the vertices between the
classes C, J, and K. This simplifying property will be dis-
cussed further in Sec. IV, where we consider inclusions of
additional diagonal interactions in the Hamiltonian. In that
case the solutions to the equations become more compli-
cated; however, the directed-loop framework is still required
in order to develop efficient codes. For the case of zero di-
agonal interactions, Eq. �3�, the exit probabilities for the
J-K model are summarized in Table I.

To carry out a directed-loop update, a vertex leg is first
chosen at random. This entrance leg together with all the
spin states on the vertex determine which one of the exit
probabilities in Table I should be applied when generating
the exit leg. These probabilities are stored in a pregenerated

FIG. 7. A closed set of two vertex paths, where only the
continue-straight process is allowed and a J vertex is transformed
into another J vertex with probability 1.
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table. When the exit has been selected, the link from it is
used to enter another vertex, from which an exit is again
chosen, etc., until the loop closes. The number of loops to be
generated during each Monte Carlo step is adjusted such that
the total number of vertices visited is, on average, of the
same order as �e.g., equal to or twice� the number of vertex
legs �8n�, e.g., 4�n� or 4M.

In some cases, a loop can become very long before it
closes. In order to avoid problems with loops that do not
close within a reasonable time, one can impose a maximum
loop length. If this limit is exceeded, the loop building is
terminated and the changes in the vertices are disregarded.
This does not introduce any bias in quantities measured in
the �� ,SM� representation, since if an update is is precluded
by this prescription the reverse update is also precluded, and
hence detailed balance in the �� ,SM� space is not affected.
Loop termination would affect measurements of the single-
particle Green’s function, which is done in the space of in-
complete loops �25,30�. In practice, the termination can eas-
ily be accomplished by simply exiting the loop-update
routine without mapping the linked-vertex representation
back into a state ��� and an operator list SM; in order to
discard only the loop currently under construction, its history
would have to be stored. Hence, not only the terminated loop
itself is discarded, but also all other loops constructed since
the previous diagonal update. This is not a problem as long
as termination does not occur frequently. We typically set the
maximum loop length to 	100�n�, and the fraction of termi-
nated loops is then very small.

F. Multibranch clusters

Since a K vertex cannot be generated directly out of a C
vertex, but requires the presence of J vertices, the directed-

loop update cannot be used when J=0. As will be demon-
strated in Sec. III, this update is also inefficient for large K /J.
This can be understood from Table I, where the bounce prob-
ability off a K vertex is seen to approach 1 as K→�. In
principle the directed-loop update, in combination with the
diagonal update, is ergodic for any finite K /J, but for K /J
�14 �in the CDW phase� it becomes difficult to obtain good
results this way. In order to improve the performance for
large K /J, a type of multibranch cluster update is developed
here. It is similar to a quantum cluster update recently devel-
oped for the transverse Ising model �13�, where it can be
considered a direct generalization of the classical Swendsen-
Wang algorithm �31�. The multibranch cluster update for the
J-K model is more complex, due to the larger number of
different interaction vertices and the multitude of possible
transformations among them.

In order to transform a C vertex directly into a K vertex,
spins at four legs have to be flipped. If this is done, spins also
have to be flipped at all the legs to which these four legs are
linked. This will in turn force additional spin flips in the
vertices to which they are linked, etc. Clearly, such a process
can branch out very quickly to a large number of vertices.
Even if a scheme can be found where detailed balance is
maintained, there is in general nothing that guarantees that
the process ever terminates �i.e., the cluster may not com-
plete�. For the J-K model, this proliferation problem can be
solved by defining a unique set of exit legs, given an en-
trance leg and all the eight spin states of the vertex. If the
constant C is chosen equal to K, which with the directed loop
probabilities in Table I can be done if K�J /2, C↔K trans-
formations will lead to no weight changes. If J vertices are
always transformed into other J vertices, there are also no
weight changes in these processes. A single constructed clus-
ter can therefore be flipped with probability 1, corresponding
to a Wolff-type update �22�. One can also subdivide the
whole linked vertex list into clusters that can be flipped in-
dependently of each other with probability 1 /2. This
Swendsen-Wang-type approach will be used here.

Figure 8 shows the branching rules for all different types
of vertices. The cases �d� and �e� correspond to C↔K trans-
formations. In all other cases the vertex class does not
change, but note that J vertices are transformed into J verti-
ces with a different pair of flipped spins �i.e., the correspond-
ing plaquette operator changes�. The outgoing arrows point
to entrances to other vertices, to which the same branching
rules are applied. However, if an exit leg is linked to a leg
that has already been visited, this leg should not be visited
again. In terms of the graphical representation used in Fig. 8,
a vertex leg should not be entered if it already has an outgo-
ing arrow. If a vertex is entered for a second time, and hence
has arrows at four legs �those with eight exit legs in Fig. 8
can clearly only be visited once�, the second set of exit legs
are exactly the four that were not previously assigned arrows.
In other words, all vertices in �c�–�i� can be assigned outgo-
ing arrows in two different ways, and the set chosen is the
one to which the entrance leg belongs. Furthermore, the two
sets of mutually exclusive exit legs are exactly the same in
the vertices obtained when the legs in one of these sets are
flipped. This solves the proliferation problem, since it is
guaranteed that a vertex leg can be visited only once. It also
allows for independent flips of all clusters.

TABLE I. All exit probabilities for the J-K model. The initial
vertex class is indicated in front of the square brackets, and the new
class after the arrow. All the possible vertex classes that can be
generated from a given vertex and entrance leg are listed within the
square brackets. In cases where more than one vertex of a given
class can be generated, the corresponding symbol appears multiple
times. J, J�, and J� denote subclasses of J vertices in which differ-
ent spin pairs are flipped. The sets a, b, and c correspond to Figs.
5–7; all other sets are related to these by symmetries. The only
bounce process is K→K; all C→C and J→J cases correspond to
continue-straight paths.

Vertex transformation Set P�K2J� P�K�2J�

C-�C ,J ,J��→C a 1−J /2C 1−J /2C

C-�C ,J ,J��→J ,J� a J /4C J /4C

J-�C ,C ,J��→C ,C a 1/2 1/2

J-�C ,C ,J��→J� a 0 0

J-�J ,J� ,J� ,K�→J b 0 0

J-�J ,J� ,J� ,K�→J� ,J� b 1/2−K /4J 0

J-�J ,J� ,J� ,K�→K b K /2J 1

K-�J ,J ,J� ,J� ,K�→J ,J ,J� ,J� b 1/4 J /2K

K-�J ,J ,J� ,J� ,K�→K b 0 1−2J /K

J-�J�→J c 1 1
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To start a cluster, a vertex leg which does not belong to a
cluster already constructed is first chosen at random, and the
branching is assigned according to the rules defined in Fig. 8.
Flags are set on all the exit legs, to indicate that they have
been visited �corresponding to the outgoing arrows Fig. 8�.
Note that the entrance also becomes an exit leg with an out-
going arrow. If the cluster is to be flipped �which it should be
with probability 1 /2�, the spins at all the exit legs are flipped.
All exit legs are put on a stack. They are subsequently picked
one by one from the stack, and the legs to which they are
linked are used as entrance legs to other vertices if they have
not yet been visited, i.e., these legs are flipped and put on the
stack only if they have not been visited before. In the graphi-
cal representation, a cluster branch ends when an arrow is
encountered. The whole cluster is completed when all arrows
point to other arrows; the stack with unprocessed entrance
legs is then empty. A completed cluster with only two verti-
ces is illustrated in Fig. 9.

Although the autocorrelation measurements discussed in
Sec. III provide a quantification of the effectiveness of the
multibranch cluster updates, we pause here to simply illus-
trate the cluster characteristics as implemented for our J-K
model. A histogram of cluster sizes generated at large K /J is
shown in Fig. 10. Clearly, the vast majority of clusters built
in this case are small eight-leg clusters �an example of which
is illustrated in Fig. 9�, with significant occupation in the
smaller bins up to clusters of size 128. A second peak occurs
in the histogram at much larger sizes, around 90% of the
total number of vertex legs. This distribution of cluster sizes
reflects the fact that every configuration contains one big
cluster, and a large number of small clusters. The large clus-

FIG. 8. Vertex transformations in the multibranch cluster up-
date. The entrance leg is denoted by an arrow pointing into the
vertices on the left. In the updated vertices to the right, the spins at
the outgoing arrows have been flipped. The branching for all en-
trance legs and vertices not shown here are obtained by applying
trivial symmetries to one of the cases shown in �a�–�i�.

FIG. 9. Multibranch cluster update in which two C vertices are
transformed into two K vertices. The initial entrance leg is at the
inward pointing arrow in the linked-vertex representation to the left.
The resulting vertices with their arrows indicating legs visited are
shown to the right.

FIG. 10. Probability histogram of cluster sizes �measured as the
number of vertex legs in a cluster� produced by multibranch cluster
updates on a 16
16 lattice at K /J=80 and �=32. The average
length of the operator list for this simulation was �n�	4.35
105

�i.e., approximately 3.5
106 vertex legs�. Data in the upper figure
are for the smaller bins, while data in the lower figure were re-
binned to 100 legs per bin. All intermediate occupations were mea-
sured as zero.
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ter spans about 90% of the vertex legs, almost independently
of the value of K /J. Hence the cluster size distribution is by
no means optimal, in the sense that the typical cluster size
does not reflect a physical correlation length of the system.
In any case the multibranch update significantly improves
the performance for large K /J, as will be shown in Sec. III.
This can probably partially be explained by the fact that the
directed-loop updates become very inefficient as K /J→�,
and hence the multibranch clusters can help performance sig-
nificantly, even though the cluster-size distribution is not
necessary optimal.

G. Physical observables

In this section we summarize the physical observables
relevant to studies of the J-K model �5–7,11�, and present the
estimators used to evaluate them in the SSE method. The
general forms of the estimators have been derived in previ-
ous papers �15–17,32�; here we only apply those derived
forms to the particular quantities of interest for the J-K
model.

We typically carry out measurements on the configura-
tions generated after every Monte Carlo step �MCS�, with a
MCS defined as a sweep of diagonal updates, followed by
construction of the linked-vertex list, in which a fixed num-
ber of loop updates are carried out. In the same linked list, all
multibranch clusters are constructed and flipped with prob-
ability 1 /2. After this, the updated vertex list is mapped back
into a new state ��� and an operator list SM. This is the
representation used for the measurements. The fill-in ele-
ments H0,0 in SM are irrelevant at this stage, and we therefore
now consider the reduced list Sn without these operators.
There are hence n+1 propagated states ���p��
= �	1

z�p� , . . . ,	N
z �p��, which are obtained one by one when

operating with the first p operators, p=0, . . . ,n, on the ini-
tially stored state ���0��= ���n��. Although measurements can
involve all the states, at any given time only a single ���p��
has to be stored.

The z component of the spin-spin correlation function can
be easily obtained, as it is diagonal in the representation
used. Equal-time correlations can be averaged over the
propagated states, i.e.,

�Sk
zSl

z� =
1

4� 1

n
�
p=0

n−1

	k
z�p�	l

z�p�� , �26�

where in the special case n=0, which occurs in practice only
for small N at very high temperatures, the averaged sum
should be replaced by 	k

z�0�	l
z�0�. Since states p and p+1

differ only by two or four flipped spins, the sum in Eq. �26�
can be replaced by a sum where only, e.g., every Nth state is
included. We often consider the Fourier transform of the cor-
relation function, i.e., the static spin structure factor

Ss�qx,qy� =
1

N
�
k,l

ei�rk−rl�·q�Sk
zSl

z� , �27�

where ri= �xi ,yi� is the lattice coordinate �with lattice spacing
1� and q= �qx ,qy� is the wave vector. We also study the cor-
responding static susceptibility,

�s�qx,qy� =
1

N
�
k,l

ei�rk−rl�·q�
0

�

�Sk
z���Sl

z�0�� . �28�

It has been shown �15� that the SSE estimator for the Kubo
integral is

�
0

�

d��Sk
z���Sl

z�0�� =
�

4� 1

n�n + 1����
p=0

n−1

	k
z�p����

p=0

n−1

	l
z�p��

+ �
p=0

n−1

	k
z�p�	l

z�p��� . �29�

Here the first term typically dominates; it is obtained by first
summing the spins at k and l over the propagated states, and
then multiplying the sums. The full sums must clearly be
calculated here, but one can still take advantage of the fact
that only two or four out of the N spins 	k

z�p� change at every
propagation p→p+1. One can thus evaluate the sums for all
sites k in nN� steps. The second term in Eq. �29� van-
ishes as N→�, but typically it gives a non-negligible rela-
tive contribution for small-N calculations and should always
be kept. This sum is the same as in the equal-time correlation
�26� and can again be replaced by a partial summation with-
out introducing a bias. In the case n=0, the whole expression
within � � in Eq. �29� should be replaced by 	k

z�0�	l
z�p�.

We are also interested in the spin stiffness, or the super-
fluid density in the boson representation, which at finite tem-
perature is defined by

�s =
1

N

�2F���
��2 = lim

�→0

�F

N

2

�2 , �30�

where F is the free energy, � is an infinitesimal twist that is
imposed on all bonds �i , j� in either the x or y lattice direc-
tion, and �F=F���−F��=0�. The corresponding bond op-
erators �1� become

Bij��� = Si
+Sj

−�ei�� + Si
−Sj

+�e−i�� . �31�

The resulting phase factors lead to a shift in the free energy
F to second order in �. However, with the plaquette operator
Pijkl���, the analogous phase factors cancel, and hence it
does not appear in the estimator for the stiffness. The deriva-
tive as �→0 in Eq. �30� can therefore be directly estimated
using the winding number fluctuations in the SSE simula-
tions, �17� in a way very similar to that done in path integral
methods �33�. We define the winding numbers wx and wy as

w� = �N�
+ − N�

−�/L , �32�

where N�
± denote the number of operators in Sn which trans-

port a boson �or spin ↑� ±1 lattice steps in the � direction. In
the J-K model, only the bond operators Bij can transfer a net
number of particles; in terms of the corresponding plaquette
operators �11�, the pairs H2,a, H4,a and H3,a, H5,a transfer
particles along the x and y axis, respectively. By operating
successively with all operators in Sn on the state ��� one can
determine all the numbers N�

± needed to obtain the winding
numbers. The partition function is then given by
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Z��� = Tr��
n

�− ��n

n!
Hnei�Lw�� . �33�

We can use the statistical mechanical definition of the free
energy to calculate the difference,

�F = −
1

�
ln�Z���

Z
� = −

1

�
ln��ei�Lw��� . �34�

Expanding the right-hand side and using Eq. �30�, we get

�s =
1

�
�w�

2� , �35�

where for square system sizes we typically average over �
=x ,y. This result can also be derived using spin current cor-
relation functions �34�.

In order to detect the modulations of the bond and
plaquette expectation values �Bij� and �Pijkl� in the striped
phase, one can use open boundary conditions in order to
break the translational symmetry. In order to break the 90°
rotational symmetry, rectangular lattices can be used. On
these lattices one can observe a unique bond or plaquette
pattern. �6� However, for careful finite-size scaling studies it
is preferable to consider periodic L
L lattices, on which all
bond and plaquette expectations average to uniform values.
We hence instead consider the corresponding correlation
functions, and also calculate the associated susceptibilities.
The static plaquette structure factor is defined as

Sp�qx,qy� =
1

N
�
a,b

ei�ra−rb�·q�PaPb� , �36�

where Pa is the plaquette operator �2� with the plaquette
subscript a defined in Fig. 1. The corresponding susceptibil-
ity is completely analogous to Eq. �28�,

�p�qx,qy� =
1

N
�
a,b

ei�ra−rb�·q�
0

�

d��Pa���Pb�0�� . �37�

Bond structure factors and susceptibilities are defined in the
same way; we here consider those corresponding to correla-
tions between bonds in the same lattice direction. Hence,
defining xk and yk as the nearest-neighbor sites of site k in the
x and y directions, the bond structure factors Sb,x and Sb,y are

Sb,��qx,qy� =
1

N
�
k,l

ei�rk−rl�·q�Bk,�k
Bl,�l

� . �38�

The corresponding susceptibilities are again defined as in Eq.
�37�.

For expectation values involving products of operators
that also appear as terms in the Hamiltonian, such as the
above plaquette and bond structure factors and susceptibili-
ties, the SSE estimators are remarkably simple expressions
involving only numbers of operators or operator combina-
tions in the list Sn �16�. The simplest case is the expectation
value of a single operator,

�Ht,a� =
�n��a,b���

�
, �39�

where n��a ,b�� is the number of elements �a ,b� in the list Sn.
This gives the internal energy

E = −
�n�
�

, �40�

which is identical to the expression obtained by Handscomb
�19�. An equal-time correlation function of two operators ap-
pearing in the Hamiltonian is given by �16�

�Hs,aHt,b� =
1

�2 ��n − 1�N��s,a��t,b��� , �41�

where N��s ,a��t ,b�� denotes the number of occurrences of
the operators �s ,a� and �t ,b� next to each other, in the given
order, in Sn �with the periodicity of Sn taken into account�.
The corresponding Kubo integral is �16�

�
0

�

d��Hs,a���Ht,b�0��

=
1

�
�N��s,a��N��t,b�� − �st�abN��s,a��� , �42�

where N��s ,a�� is the number of operators �s ,a�. Using Eqs.
�41� and �43�, the estimators for Eqs. �36�–�38� can be easily
obtained.

III. AUTOCORRELATIONS

We show here some results illustrating the performance of
the algorithm, focusing in particular on the efficiency boost
achieved with the multibranch update. Although we will at-
tempt to extract the dynamic exponent of the simulations at
the superfluid-VBS transition, we focus first on the simula-
tion dynamics inside the ordered phases. Particularly in the
VBS �striped� and staggered phases, which break spatial
symmetries, we expect slow modes corresponding to transi-
tions between the different degenerate states. One might also
expect potential problems related to long-lived defects form-
ing in these states.

For a quantity Q, the normalized autocorrelation function
is defined in the standard way as

A�Q��t� =
�Q�i + t�Q�i�� − �Q�i��2

�Q�i�2�
�43�

where the averages are over the Monte Carlo time �steps� i.
We will compare autocorrelation functions in the three dif-
ferent ordered phases, obtained in simulations with and with-
out multibranch cluster updates. A Monte Carlo step is de-
fined as a full sweep of diagonal updates, followed by a
number of directed-loop updates, and, if multibranch updates
are carried out, decomposition of the configuration into clus-
ters, each of which is flipped with probability 1 /2. In these
simulations the number of directed-loop updates per step was
chosen so that, on average, the total number of vertices vis-
ited is 4M, with the truncation M of the index sequence
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chosen equal to 1.25 times the maximum expansion order n
reached during equilibration �the dependence of M on the
length of the equilibration is in practice very small and in-
troduces only a negligible ambiguity in the definition of the
Monte Carlo time�.

Figure 11 shows autocorrelation results for the superfluid
density �s and the squared stripe order parameter MP

2 inside
the superfluid phase for a 16
16 lattice at K /T=16. At
K /J=4, the �s autocorrelations drop very rapidly �the inte-
grated autocorrelation time is less than 1�, and there are no
discernible effects of including multibranch updates. The au-
tocorrelation time for MP

2 is also very short, but here there
are clear improvements with the multibranch updates. How-
ever, considering that the CPU time is almost doubled when
including multibranch updates, including them at K /J=4 is
not advantageous. At K /J=7, which is approaching the tran-
sition point to the striped phase at K /J	7.9, the autocorre-
lations decay much more slowly, and although there are vis-
ible favorable effects of the multibranch updates in both
quantities, the gain is hardly worth the additional CPU time
cost. In Fig. 12, results are shown for the stripe order param-
eter at K /J=12, well inside the striped phase, for three dif-
ferent system sizes at inverse temperature K /T=32. The
multibranch updates have clear favorable effects on the au-
tocorrelations, but although the initial drop is considerably
faster, the asymptotic autocorrelation time, i.e., the long-time
linear decay seen on the linear-log scale used in the figures,
changes very little. In this case the reduction of the inte-
grated autocorrelation time may �depending on the exact

value of K /J, and the system size� motivate the additional
computational effort of the multibranch update.

The multibranch cluster update improves the simulation
efficiency considerably inside the CDW phase, as illustrated
in Fig. 13 for three different system sizes with K /J=32 at a
low temperature. Here the improvement in the simulation
efficiency for the squared staggered order parameter MS

2 is
clearly significant enough to motivate the cost of the multi-
branch clusters, especially for large system sizes. An inter-
esting feature to note here is that when the multi-branch clus-
ters are included, the asymptotic autocorrelation time
actually decreases for L=32 relative to L=16, and L=16 and
L=8 show almost identical autocorrelation functions. This
surprising trend for increasing L can probably be traced to
the fluctuations in the CDW order parameter for a given SSE
configuration. Figure 14 shows the dependence of the stag-
gered order parameter on the propagation number p �refer-
ring to the propagated states, Eq. �9�� divided by the total
number of operators n for an equilibrated configuration. The
fraction p /n corresponds roughly to the normalized
imaginary-time � /� in the standard Euclidean path integral
formalism �32�. For a small system, exemplified by L=8 in
the figure, the order parameter fluctuates between positive
and negative values, whereas for a large system, exemplified

FIG. 11. Autocorrelation function for the spin stiffness �upper
panel� and the plaquette-stripe order parameter �lower panel� in
simulations of L=16 systems at K /J=4 and 7, both at inverse tem-
perature K /T=16. Results of simulations both with and without the
multibranch cluster update are shown.

FIG. 12. Autocorrelation function for the plaquette-stripe order
parameter at K /J=12 and inverse temperature K /T=32. Results
with �solid curves� and without �dashed curves� multibranch clus-
ters are compared for three different system sizes.
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here by L=32, fluctuations sufficiently large to “tunnel” the
system between positive and negative order parameters are
very rare. Clearly, as T→0, there would be such tunneling
�instanton� events also in a large system, but if T is not low
compared to the gap between the symmetric and antisym-
metric linear combinations of the two different real-space
ordered states �which decreases exponentially fast with in-
creasing L�, such events are not present in typical configura-
tions. The shorter autocorrelation time for L=32 than for L
=16 �when multibranch updates are included� in Fig. 13 may
hence be related to the larger fluctuations in MS for the
smaller system size, which can lead to instantons events that
are not so easily added or removed from the configurations.
For the larger system size, there are in practice no instanton
at the temperature used here, and the difficulties in adding or
removing them in this case would only show up at very long
times as an undetectable tail in the autocorrelation function.
The order parameter fluctuations are further illustrated in the
form of histograms in Fig. 15 �only showing the positive part
of the distributions�. Here it can be seen that some instantons
are still expected at L=16, since the probability of a zero
order parameter is not negligible, but at L=32 the probability
at zero is exponentially small and hardly any instantons
would be expected on the time scale of a typical simulation.

As can be seen in Fig. 11, the asymptotic autocorrelation
time for the stripe �VBS� order is quite long, approximately
40 Monte Carlo steps, in the superfluid phase at K /J=7 even
for the modest system size L=16. Critical slowing down is
expected as the critical superfluid-VBS point is approached,
if indeed this transition is continuous �which is not presently
clear�. In Fig. 16 we show results for the Monte Carlo time
evolution of some relevant quantities very close to the quan-
tum phase transition. Here the lattice size L=96 and the tem-
perature is chosen sufficiently low for obtaining ground state
expectation values within statistical error. The points shown
are averages over “bins” of 104 Monte Carlo steps, and
clearly these bin averages are not yet statistically indepen-
dent; the autocorrelation times are several 104 Monte Carlo
steps. These simulations did include multi-branch cluster up-
dates. Currently, high-precision T→0 converged simulations
of this model close to the superfluid-VBS transition are not
feasible for L much larger than 100. Note the clear anticor-
relations between the stripe order and superfluid density in
Fig. 16. These do not, however, give an indication of the
order of the phase transition between the two phases, as an-
ticorrelations are expected at both continuous and first-order
transitions.

Finally, we discuss attempts to extract the dynamical scal-
ing exponent z� characterizing the critical slowing down of
the simulation at the superfluid-VBS phase transition. This
task is complicated by the fact that we do not know with

FIG. 13. Autocorrelation function for the staggered order pa-
rameter at K /J=32 and inverse temperature K /T=32. Results with
�solid curves� and without �dashed curves� multibranch clusters are
compared for three different system sizes.

FIG. 14. The staggered magnetization vs the propagation index
p �divided by the total number of operators n� in configurations
generated for system sizes L=8,16, and 32, at K /J=32, K /T=32.
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certainty that the transition is continuous, and in particular
we do not know the intrinsic dynamic exponent z of the
quantum critical point. In principle we should increase the
inverse temperature �=J /T according to �Lz as the lattice
size is increased. Here we show results obtained with �=L.
Figure 17 shows the integrated autocorrelation time, defined
as

��Q� =
1

2
+ �

t=1

�

A�Q��t� , �44�

for various lattice sizes and K /J=7.91. To calculate ��Q�,
autocorrelation functions were measured to large Monte
Carlo times �102� tmax�103 MC steps� until clean exponen-
tially decaying behavior was observed. An exponential “tail”
was then fitted to A�Q��t� for tmax� t�� to complete the
sum in Eq. �44�. The resulting data of Fig. 17 have relatively
large error bars for large L, that are not illustrated, however,
because they are associated with uncertainties due to the way
�44� is evaluated. Fits to the integrated autocorrelation data
of the form ��Lz� are consistent with a z�	2, but this result
is affected by some uncertainty because the asymptotic be-
havior may not yet have set in. These results again show that
the multi-branch updates do not have significant enough fa-
vorable effects to include them until larger K /J.

IV. DIAGONAL PLAQUETTE INTERACTIONS

In general, diagonal terms can be added to the Hamil-
tonian Eq. �3� without the development of a new directed-
loop algorithm; only the exit probability tables change, due

FIG. 15. Distribution of the staggered magnetization at K /J
=32, K /T=32.

FIG. 16. Bin averages for the superfluid stiffness, the stripe
structure factor, and the stripe susceptibility, for an L=96 lattice at
K /J=7.91 and inverse temperature K /T=64. Each point represents
an average over 104 Monte Carlo steps.

FIG. 17. Integrated autocorrelation times, Eq. �44�, for the su-
perfluid stiffness �bottom� and the squared plaquette structure factor
�top� at K /J=7.91. The solid lines show ��L2. Error bars are not
shown but are significant for the largest three lattice sizes.
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to the modified weights of the relevant diagonal �C� vertices
illustrated in Fig. 5 �and symmetry related sets�. We here
consider three different diagonal terms: �i� one which en-
hances or suppresses staggered �“flippable” by the K term�
plaquettes, �ii� a uniform external magnetic �Zeeman� field,
and �iii� a staggered field.

A. Flippable-plaquette interaction

The full spin Hamiltonian including the flippable-
plaquette interaction is

H = − J�
�ij�

Bij − K �
�ijkl�

Pijkl − V �
�ijkl�

Qijkl, �45�

where the bond �Bij� and plaquette �Pijkl� operators are de-
fined in Eqs. �1� and �2� and Qijkl is 1 or 0 for flippable and
nonflippable plaquettes, respectively, or

Qijkl = �1/2 + Si
z��1/2 − Sj

z��1/2 + Sk
z��1/2 − Sl

z� + �1/2 − Si
z�


�1/2 + Sj
z��1/2 − Sk

z��1/2 + Sl
z� .

This V interaction is interesting as it produces an exactly
soluble �Rokhsar-Kivelson �35�� point at J=0 and −K=V,
and is similar to the term employed in quantum dimer mod-
els �3� �see also Ref. �4��. Hence, its usefulness in making a
connection between numerical and analytical studies of mi-
croscopic Hamiltonians is immediately obvious.

To solve the directed-loop equations in the presence of a
diagonal interaction such as the V term, the general proce-
dure is simply to identify, and modify, the relevant sets of
directed-loop equations which include the vertex weighted
by V. Here, the diagonal term H1,a of Eq. �11� becomes
H1,a=CIijkl+VQijkl. In the SSE formalism, these diagonal
matrix elements are represented as C vertices, each vertex
having a weight given by Eq. �15�. The modified vertices of
interest here are denoted

WV = �↓↑↓↑�Ha�↓↑↓↑� = �↑↓↑↓�Ha�↑↓↑↓� = V + C , �46�

where we have represented the plaquettes of the basis state
��� by a list of the spin states in the order ijkl corresponding
to Fig. 1�a�. The directed-loop equations that are relevant to
this diagonal term are related to those illustrated in Fig. 5,
but clearly only the closed sets that contain fully staggered
vertices are affected by V. The set shown in Fig. 5 does not
have any such vertices and hence the corresponding directed-
loop solution is the same as with V=0. In Fig. 18 we show a
closed set that is affected by V. Here we have included the
bounce processes because they can no longer be completely
excluded. The directed-loop equations for this set are written
as

v11 + v12 + v13 + v14 = W1 = C ,

v21 + v22 + v23 + v24 = WV = V + C ,

v31 + v32 + v33 + v34 = W3 = J/2,

v41 + v42 + v43 + v44 = W4 = J/2, �47�

where W1, W3, and W4 are the same as those given before in
Eq. �16�. In order to solve these equations, we use the same

detailed balance requirements, Eq. �17�, and symmetry argu-
ments as previously to constrain the equations and produce a
unique solution. Our choice of symmetry conditions here
correspond to

v12 = v13,

v22 = v23,

v34 = v44. �48�

Two forms of the solutions are needed in order to ensure
positive-definite vertex weights for all choices of parameters.
The first solution is valid for small couplings, �V�J, and
can be formulated without the undesirable bounce processes
�the right-hand column�:

v11 = C − J/2 + V/2, v12 = J/4 − V/4, v13 = J/4

− V/4, v14 = 0,

v21 = C − J/2 + V/2, v22 = J/4 + V/4, v23 = J/4

+ V/4, v24 = 0,

v31 = J/4 − V/4, v32 = J/4 + V/4, v33 = 0, v34 = 0,

v41 = J/4 − V/4, v42 = J/4 + V/4, v43 = 0, v44 = 0.

�49�

where we see that the constant C must be greater than J /2
−V /2 to ensure that v11 remains positive. However, in order
to satisfy the requirement that a11 is positive for vertex-path
sets not affected by the V term, one should set C�J /2 for
the case V�0. For V�0, one must in addition ensure that
the weight WV in Eq. �47� remains positive, requiring a con-
stant C�J /2+ �V� /2. Note that in the limit V→0, this equa-
tion set is equal to the directed-loop equations previously
obtained in Eq. �18�. Clearly, when �V��J, a different form
of the solutions must be constructed in order to ensure that
each vertex weight stays positive. In the case V�J�0, a
nonzero bounce probability v24=V−J must be included. A
convenient form of the solution in this case is then

v11 = C, v12 = 0, v13 = 0, v14 = 0,

v21 = C, v22 = J/2, v23 = J/2, v24 = V − J ,

FIG. 18. A closed set of C and J vertex paths for which the
corresponding directed-loop equations are different for V=0 and
V�0. A second set of vertex paths—the spin reverse of the one
shown here—also gives the same directed-loop solution.
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v31 = 0, v32 = J/2, v33 = 0, v34 = 0,

v41 = 0, v42 = J/2, v43 = 0, v44 = 0, �50�

where the bounce process is turned on slowly, i.e., linearly
with V−J, ensuring a small bounce probability in the algo-
rithm for a moderate range of V larger than the exchange.
However, it is clear that the bounce process v24 becomes
negative for negative V �i.e., V�−J�0� and we hence need
a different solution in this case. Again, we use a solution that
turns the bounce processes on slowly, but in this case two
nonzero bounces are required:

v11 = C + J − 2�V�, v12 = J/2, v13 = J/2, v14 = 2�V� − 2J ,

v21 = C + J − 2�V�, v22 = 0, v23 = 0, v24 = �V� − J ,

v31 = J/2, v32 = 0, v33 = 0, v34 = 0,

v41 = J/2, v42 = 0, v43 = 0, v44 = 0. �51�

This last equation set imposes the requirement that C
�2�V�−J. In Eqs. �49�–�51�, the actual exit probabilities for
the directed-loop algorithm are obtained in the usual way by
dividing the matrix elements by the vertex weights; Pij

v

=vij /Wi, where Wi is the relevant matrix element.
Note again that when implementing a diagonal interaction

such as the V term, the only change required in the simula-
tion code, relative to the pure J-K model, is the probability
weights of only the specific relevant vertex paths affected. In
the case above for the plaquette V term, only the vertex set
shown in Fig. 18, and the related set with the other staggered
vertex, will use the solutions outlined in Eqs. �49�–�51�. All
other C to J vertex sets which do not contain fully staggered
diagonal vertices will use the original solution Eq. �18�.

B. Uniform magnetic field

Perhaps the simplest extension of the J-K Hamiltonian �3�
is the addition of an external magnetic field. A diagonal Zee-
man field h coupling to the z components of the S=1/2 spins
is of particular physical importance, as it cants the magneti-
zation away from the zero-magnetization state, or dopes the
system away from half filling in the boson language �11�.
The possibility of deconfined quantum critical points occur-
ring between superfluid and insulating states at commensu-
rate fillings other than one-half is also currently a question of
interest �36�. The Hamiltonian under study is now

H = − J�
�ij�

Bij − K �
�ijkl�

Pijkl − h�
i

Si
z, �52�

where we restrict h�0. The diagonal term H1,a of Eq. �11� is
modified to include the effects of the field,

H1,a =
h

4
�Si

z + Sj
z + Sk

z + Sl
z� + CIijkl, �53�

where this term now produces different matrix elements de-
pending on the spins Si

z ,Sj
z ,Sk

z ,Sl
z, with an associated vertex

weight Eq. �15�. We can ensure that each weight will remain

positive by adjusting C; in particular, we write C=h /2+�,
where ��0 is typically a small constant. Representing the
relevant plaquette of the state ��� by a list of the spin states,
we can calculate the weights of the 16 C vertices using Eq.
�53�. The results are summarized in Table II.

In addition, with the Hamiltonian Eq. �52�, the off-
diagonal plaquette operators H2,a to H6,a in Eq. �11� remain
unmodified. In this case, there are now four unique sets of
directed loop equations for C→C and C→J vertices that are
not related by trivial symmetry operations.

The first closed set of C and J vertex paths is illustrated in
Fig. 5, with weights aij which now also should include the
bounce processes ai4 left out in the figure. If we recall that
the open circle in Fig. 5 denotes a spin down, or Sz=−1/2,
then the directed-loop equations corresponding to this set are
now modified from Eq. �16� to read

a11 + a12 + a13 + a14 = W5
h = � ,

a21 + a22 + a23 + a24 = W4
h = h/4 + � ,

a31 + a32 + a33 + a34 = W3 = J/2,

a41 + a42 + a43 + a44 = W4 = J/2. �54�

We use the same detailed balance Eq. �17� and symmetry
arguments Eq. �48� as previously to constrain the equation
set and produce a unique solution. For fields h�4J, we can
obtain a solution which contains no bounce processes,

a11 = h/8 − J/2 + �, a12 = J/4 − h/16, a13 = J/4

− h/16, a14 = 0,

a21 = h/8 − J/2 + �, a22 = J/4 + h/16, a23 = J/4

+ h/16, a24 = 0,

TABLE II. The weight factors for the diagonal vertices in the
uniform J-K model.

�Si
zSj

zSk
zSl

z�Ha�Si
zSj

zSk
zSl

z� Weight factor

W1
h �↑↑ ↑ ↑ �Ha�↑ ↑ ↑ ↑ � h+�

W2
h �↓↑ ↑ ↑ �Ha�↓ ↑ ↑ ↑ � 3h /4+�

W2
h �↑↓ ↑ ↑ �Ha�↑ ↓ ↑ ↑ � 3h /4+�

W2
h �↑↑ ↓ ↑ �Ha�↑ ↑ ↓ ↑ � 3h /4+�

W2
h �↑↑ ↑ ↓ �Ha�↑ ↑ ↑ ↓ � 3h /4+�

W3
h �↑↑ ↓ ↓ �Ha�↑ ↑ ↓ ↓ � h /2+�

W3
h �↑↓ ↓ ↑ �Ha�↑ ↓ ↓ ↑ � h /2+�

W3
h �↓↓ ↑ ↑ �Ha�↓ ↓ ↑ ↑ � h /2+�

W3
h �↓↑ ↓ ↑ �Ha�↓ ↑ ↓ ↑ � h /2+�

W3
h �↑↓ ↑ ↓ �Ha�↑ ↓ ↑ ↓ � h /2+�

W3
h �↓↑ ↑ ↓ �Ha�↓ ↑ ↑ ↓ � h /2+�

W4
h �↑↓ ↓ ↓ �Ha�↑ ↓ ↓ ↓ � h /4+�

W4
h �↓↑ ↓ ↓ �Ha�↓ ↑ ↓ ↓ � h /4+�

W4
h �↓↓ ↑ ↓ �Ha�↓ ↓ ↑ ↓ � h /4+�

W4
h �↓↓ ↓ ↑ �Ha�↓ ↓ ↓ ↑ � h /4+�

W5
h �↓↓ ↓ ↓ �Ha�↓ ↓ ↓ ↓ � �
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a31 = J/4 − h/16, a32 = J/4 + h/16, a33 = 0, a34 = 0,

a41 = J/4 − h/16, a42 = J/4 + h/16, a43 = 0, a44 = 0,

�55�

where, to keep the element a11 positive definite, we require
��J /2−h /8. Again, for h�4J, the form of the solutions
must change in a nontrivial way in order to keep each vertex
weight positive. This requirement produces a nonzero
bounce process a24, which together with the other weights
gives the high-field solution

a11 = �, a12 = 0, a13 = 0, a14 = 0,

a21 = �, a22 = J/2, a23 = J/2, a24 = h/4 − J ,

a31 = 0, a32 = J/2, a33 = 0, a34 = 0,

a41 = 0, a42 = J/2, a43 = 0, a44 = 0. �56�

The second independent closed set of vertex weights for
the Hamiltonian Eq. �52� is obtained by taking the spin re-
verse of the closed set illustrated in Fig. 5. The resulting
directed-loop equations then contain the fully polarized ver-
tex in Table II, and are written as

c11 + c12 + c13 + c14 = W1
h = h + � ,

c21 + c22 + c23 + c24 = W2
h = 3h/4 + � ,

c31 + c32 + c33 + c34 = W3 = J/2,

c41 + c42 + c43 + c44 = W4 = J/2. �57�

This set is solved in the same way as set a above, employing
analogous conditions for detailed-balance and vertex sym-
metries. The result is two sets of vertex weights; the first, for
h�4J, is

c11 = 7h/8 − J/2 + �, c12 = J/4 + h/16, c13 = J/4

+ h/16, c14 = 0,

c21 = 7h/8 − J/2 + �, c22 = J/4 − h/16, c23 = J/4

− h/16, c24 = 0,

c31 = J/4 + h/16, c32 = J/4 − h/16, c33 = 0, c34 = 0,

c41 = J/4 + h/16, c42 = J/4 − h/16, c43 = 0, c44 = 0,

�58�

where clearly, to keep c11�0, we require ��J /2−7h /8. We
see that this solution is similar in form to the low-field solu-
tion for vertex set a, Eq. �55�. However, the c11 and c21 terms
are modified, and also the other nonzero terms have the op-
posite sign of h �i.e., if aij =J /4±h /16, then cij
=J /4�h /16�. The other solution corresponds to the large-
field case h�4J, and requires the inclusion of a nonzero
weight for the bounce process c14,

c11 = � + 3h/4, c12 = J/2, c13 = J/2, c14 = h/4 − J ,

c21 = � + 3h/4, c22 = 0, c23 = 0, c24 = 0,

c31 = J/2, c32 = 0, c33 = 0, c34 = 0,

c41 = J/2, c42 = 0, c43 = 0, c44 = 0. �59�

Again, the c11 and c21 terms are modified by the different
vertex sets, and in addition the nonzero bounce process has
moved to c14 from a24 in Eq. �56�.

The third independent closed set of vertex weights does
not include the fully spin-up or spin-down matrix elements
of the previous two, sets a and c. The diagrammatic repre-
sentation is therefore not trivially related to these previous
cases, and is illustrated in Fig. 19. In this case, the directed-
loop equations are

d11 + d12 + d13 + d14 = W4
h = h/4 + � ,

d21 + d22 + d23 + d24 = W3
h = h/2 + � ,

d31 + d32 + d33 + d34 = W3 = J/2,

d41 + d42 + d43 + d44 = W4 = J/2. �60�

While the detailed balance conditions for this equation set
are the same as before, Eq. �17�, it can be noted that the
additional symmetry conditions Eq. �48� do not appear in the
diagrams here. Although not immediately justifiable in terms
of symmetry arguments, there is in general no reason why
the same constraints cannot be used to solve equation set d,
and therefore we will continue to use Eq. �48� as it facilitates
implementation of the algorithm �although there is no guar-
antee that this leads to the most efficient simulation�. The
low-field solution �h�4J� is then given by the same equa-
tion set as solution a Eq. �55� with all dij =aij except the
following:

d11 = d21 = 3h/8 − J/2 + � . �61�

Here, it is quite obvious that we require ��J /2−3h /8 in
order to keep all vertex weights positive. For the high-field
case �h�4J�, we are forced to have a nonzero bounce pro-
cess, and upon solving we again get an equation set similar
to solution a Eq. �56�, with the exception that

d11 = d12 = � + h/4. �62�

The final set of vertex weights used in the uniform-field
solution is obtained by taking the spin reverse of the closed
set illustrated in Fig. 19, in an analogous manner to the way

FIG. 19. A closed set of C and J vertex paths used in solving the
directed-loop equations for the uniform-field J-K-h model.
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that set c was obtained from set a. The result is the directed
loop equations given by

e11 + e12 + e13 + e14 = W2
h = 3h/4 + � ,

e21 + e22 + e23 + e24 = W3
h = h/2 + � ,

e31 + e32 + e33 + e34 = W3 = J/2,

e41 + e42 + e43 + e44 = W4 = J/2. �63�

Again, we employ the detailed balance and symmetry condi-
tions discussed above to find a unique low-field solution for
h�4J, which in this case is the same as the solution set c Eq.
�58� with the exception that

e11 = e21 = 5h/8 − J/2 + � , �64�

where again the bounces have been eliminated, and to get
e11�0, we need ��J /2−5h /8. The large-field �h�4J� so-
lutions are given by the analogous set Eq. �59�, with the
exception that

e11 = e21 = � + h/2. �65�

As before, the above four equation sets a, c, d, and e
serve to uniquely define the exit probabilities, given by di-
viding the matrix elements by the vertex weights, e.g., Pij

a

=aij /Wi, where the values of Wi are given either by Table II
above, or by the previously defined values of W3=W4=J /2.
It is important, in the implementation of the directed-loop
equations, that all diagonal vertices are weighted according
to their proper equation set. The relation of a general C or J
vertex to the proper equation set in some cases depends on
the path that a loop segment takes through the vertex. For
example, the vertex in a31 is related to d31; however, the path
taken by the loop in each case results in a C vertex which is
weighted differently by the field. Also, we note that the com-
mon element of all of these equation sets is the constant �.
This � must be chosen to keep all of the elements
a11, c11, d11, e11 and their symmetry-related weights posi-
tive definite. The critical condition comes from Eq. �55�,
where a11�0 in all cases for ��J /2−h /8. It can be seen
that, if this condition is satisfied, then all of the weights c11,
d11, and e11 will automatically be positive definite, and it is
therefore the � that we choose in implementation of the al-
gorithm.

C. Staggered magnetic field

The final set of directed-loop solutions that we will
present in this paper is for the J-K model in a staggered
Zeeman field. Motivation for this extension of the Hamil-
tonian comes directly from predictions in the theory of de-
confined quantum criticality �1,37� and its applicability to
our microscopic model. In short, a staggered Zeeman field on
our spin model corresponds to a uniform Zeeman field that
couples to the z component of n̂ in the nonlinear 	 model of
relevance. The theory then predicts a “split” transition be-
tween the VBS and superfluid phases, with an intermediate
phase with neither order �but with a “background” field-
induced staggered magnetization�.

The modified Hamiltonian is

H = − J�
�ij�

Bij − K �
�ijkl�

Pijkl − h�
i

�− 1�xi+yiSi
z, �66�

where xi and yi are the Cartesian lattice coordinates of the ith
spin, and h�0. The diagonal plaquette term H1,a of Eq. �11�
is modified to include the effects of the staggered field,

H1,a = �− 1�xi+yi
h

4
�Si

z − Sj
z + Sk

z − Sl
z� + CIijkl, �67�

and the other plaquette Hamiltonian terms remain unmodi-
fied. Keeping C arbitrary for now, we can easily calculate the
weights for the 16 diagonal �C� vertices. The approach we
take in constructing the simulation is the decorate the lattice
with an A and a B sublattice in a checkerboard pattern �Fig.
20�. The solution to each vertex weight in the directed-loop
equations will have two components, one if the vertex hap-
pens to fall on an A plaquette, and another for the same
vertex on a B plaquette �see Table III�.

Turning first to the closed set of C and J diagrams, Fig. 5,
we construct the directed-loop equations, which are now dif-
ferent from the forms Eq. �16� and Eq. �54�,

a11 + a12 + a13 + a14 = C ,

a21 + a22 + a23 + a24 = � h/4 + C ,

a31 + a32 + a33 + a34 = J/2,

a41 + a42 + a43 + a44 = J/2. �68�

Notice that we have suppressed the explicit definition used
before for the weights W in order to simplify notation. The �
sign defines the convention that the corresponding term is
negative if it falls on an A plaquette, and positive if it falls on
a B plaquette. We can set the bounce processes a14=a24=0 as
long as J�h /4, giving a solution

a11 = C − J/2 � h/8, a12 = J/4 ± h/16, a13

= J/4 ± h/16, a14 = 0,

FIG. 20. Sublattice decoration of the two-dimensional square
lattice, used in constructing the quantum Monte Carlo simulation of
the J-K model with staggered Zeeman field.
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a21 = C − J/2 � h/8, a22 = J/4 � h/16, a23

= J/4 � h/16, a24 = 0,

a31 = J/4 ± h/16, a32 = J/4 � h/16, a33 = 0, a34 = 0,

a41 = J/4 ± h/16, a42 = J/4 � h/16, a43 = 0, a44 = 0.

�69�

Again, the upper symbol of � or � refers to the vertex
weight on the A sublattice, and the lower symbol corre-
sponds to the B sublattice. Note, to keep a11�0 on all
plaquettes, we require C�J /2+h /8.

Another solution for the A and B sublattices, valid for h
�4J, is obtained by necessarily requiring some nonzero
bounce probabilities. Consider first the set of equations rep-
resenting B plaquettes in Eq. �68�. A simple solution can be
found with a nonzero bounce, a24=h /4−J. Note, however,

that this sign in the first term in a24 makes this solution
invalid on A plaquettes �where h→−h�. Thus, for h�4J on
B plaquettes,

a11 = C, a12 = 0, a13 = 0, a14 = 0,

a21 = C, a22 = J/2, a23 = J/2, a24 = h/4 − J ,

a31 = 0, a32 = J/2, a33 = 0, a34 = 0,

a41 = 0, a42 = J/2, a43 = 0, a44 = 0. �70�

For A plaquettes, another form of the solution is needed,
which is analogous to the solution Eq. �51� found for the
diagonal interaction V�−J�0. Setting a14=h /2−2J and
a24=h /4−J constrains the equations to give the solution �h
�4J on A plaquettes�.

a11 = C + J − h/2, a12 = J/2, a13 = J/2, a14 = h/2 − 2J ,

a21 = C + J − h/2, a22 = 0, a23 = 0, a24 = h/4 − J ,

a31 = J/2, a32 = 0, a33 = 0, a34 = 0,

a41 = J/2, a42 = 0, a43 = 0, a44 = 0. �71�

This imposes the requirement that C�h /2−J.
This outlines the basic method of constructing the

directed-loop probabilities for the staggered magnetic field

TABLE IV. Vertex weight equation set I for the staggered-field
J-K model. An example of the starting vertex a11 is illustrated in
Fig. 22.

Vertex A /B �h�4J� A �h�4J� B �h�4J�

a11 C−J /2�h /8 C+J−h /2 C

a12 J /4±h /16 J /2 0

a14 0 h /2−2J 0

a22 J /4�h /16 0 J /2

a24 0 h /4−J h /4−J

a33 0 0 0

a34 0 0 0

FIG. 21. Schematic representation of the closed set of C and J
vertex paths used in solving the directed-loop equations for the
J-K model. Blocks with the same shading represent equivalent ver-
tex weights.

FIG. 22. Reference elements of the closed C and J vertex-path
diagrams. The element letters �left� and equation set designation
�right� refer to the relevant vertex weight equation set in Tables
IV–IX.

TABLE III. The weight factors for the diagonal vertices in the
staggered J-K model.

�Si
zSj

zSk
zSl

z�Ha�Si
zSj

zSk
zSl

z� A sublattice B sublattice

�↑↑ ↑ ↑ �Ha�↑ ↑ ↑ ↑ � C C

�↓↓ ↓ ↓ �Ha�↓ ↓ ↓ ↓ � C C

�↓↑ ↑ ↑ �Ha�↓ ↑ ↑ ↑ � −h /4+C h /4+C

�↑↓ ↑ ↑ �Ha�↑ ↓ ↑ ↑ � h /4+C −h /4+C

�↑↑ ↓ ↑ �Ha�↑ ↑ ↓ ↑ � −h /4+C h /4+C

�↑↑ ↑ ↓ �Ha�↑ ↑ ↑ ↓ � h /4+C −h /4+C

�↑↓ ↓ ↓ �Ha�↑ ↓ ↓ ↓ � h /4+C −h /4+C

�↓↑ ↓ ↓ �Ha�↓ ↑ ↓ ↓ � −h /4+C h /4+C

�↓↓ ↑ ↓ �Ha�↓ ↓ ↑ ↓ � h /4+C −h /4+C

�↓↓ ↓ ↑ �Ha�↓ ↓ ↓ ↑ � −h /4+C h /4+C

�↑↑ ↓ ↓ �Ha�↑ ↑ ↓ ↓ � C C

�↑↓ ↓ ↑ �Ha�↑ ↓ ↓ ↑ � C C

�↓↓ ↑ ↑ �Ha�↓ ↓ ↑ ↑ � C C

�↓↑ ↑ ↓ �Ha�↓ ↑ ↑ ↓ � C C

�↑↓ ↑ ↓ �Ha�↑ ↓ ↑ ↓ � h /2+C −h /2+C

�↓↑ ↓ ↑ �Ha�↓ ↑ ↓ ↑ � −h /2+C h /2+C
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Hamiltonian. The only difficulty in completing the procedure
is identifying all of the separate sets of closed vertex-path
diagrams which contribute different vertex weights to the
directed-loop algorithm. Instead of explicitly illustrating and
solving all of these different sets in this case, we simply
present the solutions in a more concise form. To begin, note
that we can abbreviate the illustration of the closed sets of C
and J vertex paths if we constrain the solutions to obey the
same detailed balance Eq. �17� and symmetry arguments Eq.
�48� as used throughout this paper. In this case, one only
needs to know the upper left �reference� vertex �a11 in Fig. 5�
in order to uniquely define the entire closed set of C to J
vertex paths. The rules for constructing the closed set, as
discussed in Sec. II E, can then be summarized by the sche-
matic representation in Fig. 21, which illustrates the general
relationship between the different vertex weights, and their
corresponding transformations.

We can therefore easily construct an entire closed set of C
and J vertex paths using Fig. 21 simply by defining the ref-
erence vertex. Following this procedure, we see that the
number of unique vertex probability solution sets is nar-
rowed down to six, unrelated by trivial symmetry operations.
The reference vertices for these six unique sets are illustrated
in Fig. 22. The corresponding vertex weights are summarized
in the equation sets of Tables IV–IX. For example, the first
reference vertex of equation set I in Fig. 22 corresponds to
a11 of Fig. 5. The corresponding vertex weights appear in
Table IV, and are equivalent to the solution sets Eqs.
�69�–�71�. The tables are abbreviated to include only unique
weights not related by the symmetries of Fig. 21; however,
the full equation sets are recovered easily by using this figure
or Eqs. �17� and �48�.

V. DISCUSSION

In summary, we have developed in this work an extensive
algorithmic framework for SSE quantum Monte Carlo simu-
lations of the S=1/2 XY model with ring exchange—the
J-K model—on a 2D square lattice. In addition to outlining
the basic representation of the quantum mechanical partition
function as a power-series expansion of plaquette operators
acting on a chosen basis in the Sz representation, we have
developed advanced implementations of the directed-loop
and multibranch cluster updates, designed to significantly in-
crease algorithm efficiency in various parameter regimes of
the Hamiltonian. We have studied the performance of the
various updating procedures using autocorrelation functions.
We have also outlined modifications of the directed-loop
equations to account for extensions of the J-K Hamiltonian
to include diagonal �potential-energy� operators. Although
several specific Hamiltonian terms are discussed, the proce-
dure developed is sufficiently general to allow for easy ex-
tensions to other diagonal interactions.

The last step needed to provide confidence in the rather
complex implementation of our directed-loop algorithms dis-
cussed here is to carry out rigorous testing. We do this by
comparing SSE data with results obtained by exact diagonal-
ization of the Hamiltonian. Table X compares ground state
energies obtained in various algorithmic solution regimes of
the quantum Monte Carlo schemes discussed here with exact
diagonalization results for 4
4 lattices. In the simulations,
the temperature T0 was chosen sufficiently low for there to
be no differences, within statistical errors, between simula-
tions carried out at T0 and 2T0. The absence of any detectable
differences between the exact and SSE results to a relative
statistical accuracy of 	10−5 illustrates the unbiased nature
of these calculations.

TABLE VIII. Vertex weight equation set V.

Vertex A /B �h�4J� A �h�4J� B �h�4J�

i11 C−J /2±3h /8 C+h /4 C+J−3h /4

i12 J /4�h /16 0 J /2

i14 0 0 h /2−2J

i22 J /4±h /16 J /2 0

i24 0 h /4−J h /4−J

i33 0 0 0

i34 0 0 0

TABLE V. Vertex weight equation set II.

Vertex A /B �h�4J� A �h�4J� B �h�4J�

s11 C−J /2±h /8 C C+J−h /2

s12 J /4�h /16 0 J /2

s14 0 0 h /2−2J

s22 J /4±h /16 J /2 0

s24 0 h /4−J h /4−J

s33 0 0 0

s34 0 0 0

TABLE VI. Vertex weight equation set III.

Vertex A /B �h�4J� A �h�4J� B �h�4J�

e11 C−J /2±h /8 C C+J−h /2

e12 J /4±h /16 J /2 0

e14 0 h /4−J h /4−J

e22 J /4�h /16 0 J /2

e24 0 0 h /2−2J

e33 0 0 0

e34 0 0 0

TABLE VII. Vertex weight equation set IV.

Vertex A /B �h�4J� A �h�4J� B �h�4J�

f11 C−J /2�h /8 C+J−h /2 C

f12 J /4�h /16 0 J /2

f14 0 h /4−J h /4−J

f22 J /4±h /16 J /2 0

f24 0 h /2−2J 0

f33 0 0 0

f34 0 0 0
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The SSE algorithm developed here can be extended
straightforwardly to J-K models with four-spin exchange
terms on other lattices. For example, implementation of the
Hamiltonian on the triangular �38� and kagome �4� lattices is
possible for some parameter regimes without being ham-
pered by the sign problem. In particular, quantum Monte
Carlo simulations at or near the Rokhsar-Kivelson point �35�
�J=0, −K=V� are anticipated to make explicit connection
with predictions from analytical theories. Studies on these
models are under way, and are expected to reveal a rich
variety of ground state phenomenon.

In principle, the scheme can be extended also to multispin
interactions on rings with more than four spins, for example
the XY model with six-spin exchange on the pyrochlore lat-
tice �39�. However, it is clear that the directed-loop scheme
will then become quite complex, and explicit solutions of the
type we have presented here may not be practical.
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